
DTIC
AD-A241 891AFill'~~~~ ~ Uii II IY~'III _

MacTester: A Low-Cost Functional
Tester for Interactive Testing and

Debugging

Carl Ebeling and Neil McKenzie

Department of Computer Science & Engineering
University of Washington

Seattle. WA 98195

Technical Report 91-10-02

[)I:PARWI\IEI OF COMPUTER SCIENC[E ENGINEERING

U nuz'rszri q, \Uz~hin,,nw

Seattle 981I95

91-13852 V1 1 22 150

tLIMI NOTICE

THIS DOCUMENT IS BEST
QUALITY AVAILABLE. THE COPY

FURNISHED TO DTIC CONTAINED
A SIGNIFICANT NUMBER OF

PAGES WHICH DO NOT

REPRODUCE LEGIBLY.

,.EcufliTy CLASSIFICATION 0 C :S PAGE (Whan Dae. Eter.ed)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

1. REPORT NUMBER 2.GOVT ACCESSION NO. I. RECIPIENT'$ CATALOG NUMBER

4. TTLE and ubtile)S. TYPE OF REPORT 6 PERIOD COVERED
MacTester: A Low-Cost Functional Tester for Technical
Interactive Testing and Debugging _______________

S. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(o) 0. CONTRACT OR GRANT NUMS19R(s)

Carl Ebeling and Neil McKenzie N00014-88-K-0453

S. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK

Northwest Laboratory for Integrated Systems AREA II ORK UNIT NUM99AS

University of Washington
Dept. of Comp. Science, FR-35 Seattle, WA 9819'

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

DARPA- ISTO_______________

1400 Wilson BoulevardI.NUEROPAS
W4lIwgon. VA Z2209 ______________

IA MNIORNG AGENCY NAME A AOORESS(lI diileforti front Controlling Office) 1S. SECURITY CLASS. (of this report)

Office of Naval Research - ONR
Information Systems Program - Code 1513: CAF
800 North Quincy Street IS.. OCLASSI7rICATION/OOWNGRADING

Arlington, VA 22217 OL

IS. DISTRIBUTIONi STATEMENT (of this Report)

Distribution of this report is unlimited.

17. DISTRISUTION STATEMENT (of the sbelrect entered In Block 20, i differentl from Report)

IS. SUPPLEMENTARY NOTES

I1. KEY WORDS (Continue on reverse adds Ii nocoseery and Identify by block number)

Testing, Debugging, Functional Testing

20. ABSTRACT (Continue on reverse side Of necessary and Identify by block number)

We describe a low-cost, functional tester for the MaclI that allows students
to test and debug digital systems interactively. This tester provides a larqE
number of programmable 1/0 signals and can be used to test chips, boards and
subsystems.* Test programs are easily written using a simple, intuitive inter-
face and we exp' ect a variety of interactive graphical testing and debugging
environments to be built for the tester. We vlan to make this tester
generally available in kit form.

DD I J"7 1473 EDITION OF' I NOV 65 IS OBSOLETE

S/N 002-L-0146601SECURITY CLASSIFICATION OF TMIS PAGE (When Doe Entered)

MacTester: A Low-Cost Functional
Tester for Interactive Testing and

Debugging

Carl Ebeling and Neil McKenzie

Depa~tment of Computer Science & Engineering
University of Washington

Seattle, WA 98195

Technical Report 91-10-02
October, 1991

';' t " tt, t I-

' -. A

MacTester: A Low-Cost Functional Tester
for Interactive Testing and Debugging

Carl Ebeling and Neil McKenzie
Department of Computer Science and Engineering
Universitv of Washington
Seattle. WA 98195

Abstract

We describe a low-cost. functional tester for the Macll that allows students to test and
debug digital systems interactivelv. This tester provides a large number of
programmable I/0 signals and can be used to test chips. boards and subsystems. Test
programs are easily written using a simple, intuitive interlace and we expect a variety
of interactive graphical testing and debugging envu-onments to be built for the tester.
We plan to make this tester generally available in kit form.

Introduction

Testing design projects in the University is typically done m an ad hoc wav. Some sort
of hardware environment is designed around the project to create a self-contained
system which can be operated. observed and debugged using a logic analyzer or
oscilloscope. Testing and debugging a partially completed system or a subsystem that
operates in a complex environment can be verv difficult. As the complexity of projects
grows with the complexity of off-the-shef parts and the capability of design tools. the
problem of testing is becoming even more difficult. This is especially true for custom
VUSI chip designs. Although commercial testers provide the necessary Iunctionalitv.
their cost is prohibitive and the usual testing environment is primitive.

The goal of the MacTester project is to remedy this situation by providing a powerful.
interactive environment for functionally testing digital systems. Functional testing
means that the values and sequencing of the I/O signals can be verified but that precise
tining cannot. In particular. a functional tester cannot be used to determine how fast a
system can run. While speed testing is clearly important. testing and debugging
concerns tend to dominate in the classroom laboratory situation. We believe that the
issues of functional testing and debugging can be separated from those of timing
validation.

There are three styles of testing: Ottline. online and interactive. The usual method is
offline testing where a list of test vectors is prepared and presented offline to the device
under test (DUT. The resulting responses are collected and analyzed after the test is
completed. Online testing is performed in real time where each test vector is generated
and the response analyzed before succeeding test vectors are generated. Interactive
testing allows the user to interact with the DUT on a vector by vector basis. The user can
inspect the results of the current test vector to determine the next vector. Efficient
debugging is facilitated by a good Interactive testing environment. The only drawback
to interactive testing is that it cannot be used for circuits with dynamic state.

(Interested parties should contact ebeling@cs. washington.edu)

The MacTester has been designed to allow all three types of testing. although we view
interactive testing and debugging as the most important. The Macintosh computer is an
ideal host for Interactive testing and debugging because of its uniform, intuitive user
interface and interactive graphics capability. The tester and the software interface
provide the mechanism with which a wide variety of testing environments can be built.
We expect many different graphical and procedural interfaces to the tester to be built as
users define their own testing needs.

Cost and functionalitv were often competing goals in the design of the MacTester. We
decided to provide the following features that we felt were necessary for a tester used in
design laboratories:

* The tester is easily shared by more than one project. Changing the test setup from one
project to another takes only the few minutes needed to change the power and ground
jumpers. (A pre-test can be performed to ensure that the power and ground setup
matches the specification.) This ability to share reduces the number of testers that are
needed and the overall cost.

* The tester provides a large number (128) of test signals so that even large projects can
be accommodated.

• All signals are bi-directional and can be individually set to the input or output state.
lthough this makes the tester Implementation more expensive, it facilitates sharing

between projects since all pins can be redefined in software. Moreover, since the
direction can be set dynamically. tri-state busses can be tested.

, Provision has been made for dynamic circuits by including an on-biard memory
capable of storing several thousand test vectors. The tester can indepen~dently present
these vectors at a rate of 1 MHz. Although dynamic circuits cannot be tested in a truly
interactive fashion, the tester software includes a construct that allows the user to
maintain the illusion.

We will begin bv describing the software interface to the tester to show how the user
views the device under test. We then outline the implementation of the hardware and
the software.

The 'Fester Interface

In this section. we describe how the device under test (DUT) appears from the point of
view of a test program and how the program manipulates the I/O signals. The tester
software provides a simple, intuitive interface that makes it easy for programs to use
the tester. These programs can range from simple test programs devised by the user to
sophisticated interactive programs that supply a visual interface via schematics and
timing diagrams. A simple test program for a combinational multiplier is shown in
Figure 1.

To the user. the pins of the DUT appear as variables in the test program. The user first
defines a set of signal variables in the DefineSignais section, each as a collection of
pins, and then manipulates the values of the pins via these variables. Changing the
value of a signal variable changes the values of the associated pins and reading the
value of a signal variable reads the values of the pins. Although most signal variables
are declared as input or output variables, they can also be declared to be bi-directional
and the direction changed at any time.

A test proceeds as a series of test steps, each activated by the Next control statement. In
each test step. a new set of values is first driven in unison onto the DUT Input pins and

then the resulting values of the DLUT output pins are latched. These events are separated
by enough tin.- to allow the output values to become stable before they are sensed. In
fa,: the tester provides a very limited version of speed testing by allowing the user to set
this time interval. The delay from the clock driving the input values to the clock
latching the ouiput values can be preset to any value from 20 ns. to I Psec. in increments
of about 5 ns.

Define tihe chip signals I/
DefirneSignals3

Signal(Multiplier, "2,4,6,8,10,12,14,16", INPUT, 0);
Signal(Multiplicand, "I,5,7,9,1,13,15,7", :NPUT, 0);
Signal(Resuit, "'25:18", OUTPUT);

EndSignais

main ()

BeginTest;
fnr (i=0; i<256; i++) f

for (j=O; j<256; j±+)
ZetSignai(Muitiplier, 1) ;

2etSianai. (Mu] t:pican, ,
Next;
Lf (,GetSignai(Resuit) i") i

crintf ("error: = id ==> 'd\n", i, -, GetbiunaI(Result));

EndTest;

Figure 1: Test program for a combinational multiplier.

The values of signals are changed via the SetSignal statement, and the values accessed
via the G3etSignai statement. SetSignal statements do not take effect immediately.
but the values specified are collected and applied to the pins of the DUT by the Next
sequencing statement. which performs all accumulated changes in parallel. The

-etSignai statement returns the value of the signal latched by the most recent Next
statement. Thus a step in the test program typically consists of a set of SetSignai

statements followed by a Next statement followed by a set of GetSignai statements.

The direction of a signal declared in the DefineSignal statement can be INPUT. CUTPUT.
or BIDIRECTIONAL. The direction of bi-directional signals can be changed at any time
via the SetDirect ion statement. These changes are accumulated like signal value
changes and applied by the next Next statement.

Each test step can be thought of as a test vector, except that each test vector is created on
the fly by the program tnd the resulting response is available immediately and can be
used to generate the next test vector. This makes testing truly interactive from the point
of view of the test program and this view can be passed along to the user.

The tester provides no signals other than those provided by the user program. In
particular. the test program must supply the clocks by changing a signal variable or set
of variables explicitly. Thus a single clock cycle for a circuit using a two-phase non-
overlapping clock requires at least four test vectors. Figure 2 gives a test program for a
single-stage pipelined multiplier.

Define the chip .5lanais .

:etineSiornais
_ignaixuli-lier, "7:6,8,10,12,14,16", INPUT, D
-ignai(Multiolicand, .,7,9,11,13,5,17", I-NPUT, J);
-4gnai(Resu_:, "25:1 O-UTPUT);
'4 gna i (Phil. '26", IU 1);
S Ignai (Phi2. '27, ::,C)

7ndSianais
lzk~ip)Perform a single Phil/Phi2 clock cycle

Next; 7*Assert data before clockina -'
SetSicrnai (Phil-, 2;Next;
zetSicznai (Phi2, 1); Next;
-etSianai(Phi2, C); Next;
-etSicnai(Phil, _); Next;

3tatl-c Int IastX, lastY, -astResuit; *Previous test
F) -£11 .e pipeline ~

_etznaiucr '
SetSi,>na I(MuitiIcana,2)
Z-OCKCh-n Z)

I~st~sJI~- astiX = Lasty 2

-~tmuz Cx,* Performn one test ofr the multiplier

S'etSicnal(Mulitccand, 7);
CockChir)
_f (GetSiqgn:-CResui:) '=LastResuit)

p r iit fC"7r r x >x => ~x (--xV r,", I-astX, lsY
Oet~ura1 g~su-C, astResui:C-;

_ast:ResuI- -- X -
Iast:X

main (

BeginI'est;
_nitmit * Fill pipeline

for (i- ; _4<56; I~-) I

for (=0; <256; -+

i-estrnuit (I'9

testnui:CO, '2; * Flush pipeline ~
EndTest;

Figure 2: Test program for a single-stage pipelined multiplier.

Dynamic and Pseudo-static Circuits

Dynamic circuits cannot be tested interactively because the dynamic state is lost unless
the circuit is operated continuously. Since the time for which dynamic state can be held
is typically much less than a second, user interaction is not possible. Online testing
may also be ruled out if the time between test vectors cannot be bounded. In particular.
programs running under A/ UX can be interrupted by the operating system for relatively
long periods of time.

The MacTester accommodates dynamic circuits via onboard test vector memory which
permits offline testing. In online mode, the Next statement causes accumulated values
to be written directly to the DUT pins and the response to be read back. in offline mode.
the test vectors generated by the Next statement are stored in test vector memory and
presented all at once. independently from the test program. The responses are
accumulated in the test veetor memoiry and can be read back after the ofiline test has
completed.

-.estrut(X, Y) Perform c.ne test of the multipier

£etSianai (Multiplier, x);
SetSionai (Mult ;iicani, Y);
:l1ocKChio()
Verify

if (GetSignal(Resuit) 1=lastResuit)
printf ("Error: %x *%x => %xf%x] \n",

lastX, lastY, G3etSignal(Resulc), lastResult);

EndVerify
lastResult=
lastX =X
'astY = y

main (

3eain~est;
-Or (i=O; i ,256; i-)

BeginDynamic;
~nitmult(); i Fill pipeline ~

for (j=O; -<256; -+
testrnult(i, j);

testmult(Q, 0); /* Flush pipeline ~
EndDynamic;

EndTest;

Figure 3: The modifted test program for a dygnamnic one-stage. ptpelined multiplier.

The tester software package contains a dijnainc bLock construct that is used to
maintain the illusion i:-at the test program is online when in fact it is not. A dynamic
block is created by wr -.:ing an arbitrary set of statements with
BeainDvnaruc/EncDvr-ar,: statements. A dynamic block is executed twice. In the first.
generate. phase. al the vectors c :!rated within the block are accumulated and
presented olilne when : --id of the .namic block is encountered. In the second.
verifi. phase. the respons.. vectors are available in the right sequence and statements
that access these are executed.

Clearly this places restrictions on the program statements in the dynamic block since
some should be executed only in the first phase. and others only in the second phase.
The SetSignal statement is defined to have effect only in the generate phase - other
statements that are to be restricted to the generate phase can be protected using the
3enerate macro. The Verify macro is used to protect statements that are executed only
in the verify phase.

The test program in Figure 2 can be changed to test a completely dynamic pipelined
multiplier as shown in Figure 3. The dynamic block has been placed as shown because
,he test vector memory is limited to about 5300 vectors. Note that if the v-
t;rotection macro is left out. the program will produce errors dunno the cenerate phase
because the result f 2erS- anaiL is undefined during this phase.

Dvnamic circuits .n certainlv ::ake test programs more complicated. Fortunately.
most dynami c r. :its can sur-:ve online testing since if the computation required to
generate each test vector is limited, online testing can proceed at about 50 KHz. This is
true for programs under MacOS. but we were pleasantly surpnsed to find that test
programs running under A/UX generally worked as well.

FeudU-Sbaiic cctUA1,,. LlilA iZ. CilcuiiLS that aie staLIc dA sunie point ili the clock cycle,
can be tested interactivelv. In this case. the dvnanic block is limited to a few
statements and the test program can be interactive at the granularity of a clock cycle
rather than each test vector. For example. if the multiplier in Figure 3 were pseudo-
static, the dynamic block would be confined to the C21:ckChip procedure.

Implementation

A very high-level block diagram of the tester is shown in Figure 4 During one step of an
online test. the appropriate level 1 registers are first written by the host. These vaiues
are then transferred in unison to the level 2 registers which are connected directly to
the DUT pins. The level 3 registers are then latched after some user-specified delay.
Finally. the results in the level 3 registers are read back by the host.

Offline testing is performed by first downloading the test vectors into the test vector
memory and indicating the start and end address of the sequence. The tester then
performs the offline test by transferring test vectors to the level 1 registers and results
from the level 3 registers back into test vector memory. When the end address is
encountered. a donc bit is set in the interface control register and the host can upload
the responses. The oifline test can also be placed in a loop so that a particular test
sequence can be monitored with an oscilloscope.

The hardware design was simplified by the use of Xlinx prograrmmable gate array
chips. The data path is implemented in six XC3020 chips and the control lop"- ir a
seventh Although the implementation would have been possible using fewer of the
larger Xilinx gate arrays, the cost per pin grows almost quadratically, and the XC3020
was chosen as the most cost-effective size. The choice of Xllinx gate arrays allows the
data path and control to be changed by the user via the Xillnx design software. For

example, the programmable delay was implemented after the fact by using a
multiplexor to specily the number of logic levels between the drive and latch clocks.

Data Bus

T level 1 level 2 level 3NuBus 32

Intrfa e rae ,

ratenfrrma cssbe 5M2 to8 2M8z bu3eue2h ume fsai AMsfo 8t

Cable
value in J- -

Cn DUT pin numbvaue out

Vector
Memnory

direction

clk [

Figure 4: The overall block diagram of the tester. The data path Ls ; 28 bits deep.

The test vector memory is potentially a large and expensive part of the tester. WVe chose
to trade cost for speed by multiplexing the RAM six ways. This reduces offline testing
rate frnm a possible 5M~dz to lMHz. but reduces the number of static RAM's from 48 to 8
ind reduces the number of 1/0 pins required for the datapath.

The tester is implemented as an 8x13 inch PC board as shown in Figure 5. This board is
connected via a simple parallel interlace to an ADDEX NuBus interface board that plups
d4-cctl;" into the ",'aclI. h, Is interface is qu,Lc simple -.nd interfacing th# tester to other
busses like the SBUS or VME bus is straightforward.

Software Interface Implementation

At the lowest level, the tester control and data registers are mapped directly into the
address space of the user program. This is possible for both MacOS and A/UX programs
and greatly simplifles the interface implementation. At the lowest level, a set of
macros is provided for accessing these registers and for performing all the tester
control operations. In addition, memory is allocated for collecting signal values and
directions for each signal variable defined.

At the next level, user-visible operations are implemented using the low-level macros
and interface memory. The SetSignai. SetDirection and GetSignai operations are
implemented in two different ways depending on when the signal variables are defined.
If the, are defined dynaiiwcaly. then these opcrauons must be interpreted. Otherwise
they can be pre-compiled into a much more efficient implementation.

KE~ v--! ---q F--1 W--- ' I W

302ur -OutinProbe pins 30201

RMa VRAM
3020 I PGA ZIF ' 3020

Socket
VRA'RAM7

Figure 5: Outline of- the tester PC bcxarci

There is a wide range of possible testng and debugging environments that can be built
,)n top of the MacTester. First. as shown in the sample programs. writing test programs
is straightforward. In fact. a program is a very powerful way to specir, the behavior ot
the environment of the system being tested. One such technique is to write a procedure
that takes an abstract operation and maps it into the sequence of signal values that
implements that operation. For example. I testing a dvnamic RAM. one would write
procedures tor the read arid write operations that generates the multpiexed address and
:he appronriate RAS/CAS. An effective way to familiarize students with the operation
it the more 'onpie-x oif-the-shef parts is bv havinp them write such t,-st prolgrams.

'\Ie expect a varietv ot raphical testing environments to be developed as well. in such
in environment, the inputs and outputs o1 the device being tested can be displayed in
-,eparate windows and formatted in different ways. for example as timing diagrams or a
time line ot values. For example. Capilano has graphical simulation tools which can
interlace to other software using what is called the Meda interface. Using these tools.
the tester can be incorporated into the graphical simulation as a separate device. All
the graphical I/O devices such as keypads. dLsplays. and timing diagrams that are
provided by the Captlano simulation tools can then be used to test and debug ones
project in the tester. Moreover. the project can be simulated as part ot a larger system as
described bv schematic drawings.

We also plan to use the tester In the RNL simulation environment. RNL provides an
interactlve Lisp environment for testing MOS circuits. First. the simulation can be
replaced bv the tester and the interactive Lisp environment used to test the project.
Second. if there is a circuit description for the project. then the same program used to
test the design can be used to test the finished product. Moreover, the simulation and
the tester can be run in parallel and the results compared. This same strategy can be
iised for other simulators. notably the COSMOS simulator.

Status

-lie Iull 12S test pin PC board-version has been completed and is currently being used to
test two VLSI chips using test'programs and the simple software mterlace. The
:uterface to the Caplano sofltare will be completed this summer, as well as RNL and
COSMOS Irontends. Anvone Interested in obtaining this tester should contact the
Authors. We are currently planing to make the tester available in kit form along with
,i set of test software for the MIclI.

Acknow!cdgements

-his k'ork was Iunded in partby Apple Computer. Inc.. grant ER0030-65-5742. and NSF
orant CCRS657589A02. ThelNorthw!st Laboratory for Integrated Systems is sponsored
in part bv DARPA under contict N00014-88-K-0453.

